Heat Kernels on Metric Graphs and a Trace Formula

نویسندگان

  • VADIM KOSTRYKIN
  • ROBERT SCHRADER
  • R. SCHRADER
چکیده

We study heat semigroups generated by self-adjoint Laplace operators on metric graphs characterized by the property that the local scattering matrices associated with each vertex of the graph are independent from the spectral parameter. For such operators we prove a representation for the heat kernel as a sum over all walks with given initial and terminal edges. Using this representation a trace formula for heat semigroups is proven. Applications of the trace formula to inverse spectral and scattering problems are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The trace formula for quantum graphs with general self adjoint boundary conditions

We consider compact metric graphs with an arbitrary self adjoint realisation of the differential Laplacian. After discussing spectral properties of Laplacians, we prove several versions of trace formulae, relating Laplace spectra to sums over periodic orbits on the graph. This includes trace formulae with, respectively, absolutely and conditionally convergent periodic orbit sums; the convergenc...

متن کامل

Trace formulae for quantum graphs

Quantum graph models are based on the spectral theory of (differential) Laplace operators on metric graphs. We focus on compact graphs and survey various forms of trace formulae that relate Laplace spectra to periodic orbits on the graphs. Included are representations of the heat trace as well as of the spectral density in terms of sums over periodic orbits. Finally, a general trace formula for...

متن کامل

Heat kernels on manifolds, graphs and fractals

We consider heat kernels on different spaces such as Riemannian manifolds, graphs, and abstract metric measure spaces including fractals. The talk is an overview of the relationships between the heat kernel upper and lower bounds and the geometric properties of the underlying space. As an application some estimate of higher eigenvalues of the Dirichlet problem is considered.

متن کامل

Statistical Translation, Heat Kernels and Expected Distances

High dimensional structured data such as text and images is often poorly understood and misrepresented in statistical modeling. The standard histogram representation suffers from high variance and performs poorly in general. We explore novel connections between statistical translation, heat kernels on manifolds and graphs, and expected distances. These connections provide a new framework for un...

متن کامل

Extended graphs based on KM-fuzzy metric spaces

This paper,  applies the concept  of KM-fuzzy metric spaces and  introduces a novel concept of KM-fuzzy metric  graphs based on KM-fuzzy metric spaces.  This study, investigates the finite KM-fuzzy metric spaces with respect to metrics and KM-fuzzy metrics and constructs KM-fuzzy metric spaces on any given non-empty sets. It tries to  extend   the concept of KM-fuzzy metric spaces to  a larger ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007